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SUMMARY 
In this work a mixed Eulerian-Lagrangian technique is devised, hereinafter abbreviated as ELAFINT (Eulerian- 
Lagrangian Algorithm For INterface Tracking). The method is capable of handling fluid flows in the presence of 
both irregularly shaped solid boundaries and moving/& phase boundaries. The position and shape of the 
boundary are tracked explicitly by the Lagrangian translation of marker particles. The field equations are solved 
on an underlying fixed grid as in Eulerian methods. The interface passes through the grid lay-out and details 
regarding the treatment of the cut cells so formed are provided. The issues involved in treating the internal 
boundaries are dealt with, with particular attention to conservation and consistency in the vicinity of the interface. 
The method is tested by comparing with solutions from well-tested body-fitted coordinate methods. Test cases 
pertaining to forced and natural convection in irregular geometries and moving phase boundaries with melt 
convection are presented. The capability developed here can be beneficial in solving difficult flow problems 
involving moving and geometrically complex boundaries. 
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1. INTRODUCTION 

Many fluid dynamics problems of practical interest involve irregularly shaped boundaries. In some 
cases the boundanes also move and change shape.lV2 Considerable efforts have been directed in the 
past towards simulating fluid flows in the presence of such boundaries, which often separate distinct 
phases. For example, algorithms based on body-fitted co-ordinates have been extensively developed in 
the last two  decade^.^ When the interface is not highly deformed, a single boundary-confonning grid 
arrangement is convenient for obtaining solutions to the transport eq~ations.4.~ However, the efficacy 
of the boundary-fitted grid deteriorates when the interfke becomes highly distorted, owing to difficulty 
in obtaining smooth grid distributions. The situation can be further complicated when there are moving 
boundaries. The method experiences serious difficulties when interfaces merge or fragment. For highly 
deformed interface shapes, purely Eulerian methods2*c'o have been found to be useful, since in such 
methods the grid is completely independent of the interface and is usually of fixed Cartesian form. 
However, when details of the interface shape are to be explicitly tracked, the Eulerian methods are not 
suitable, since in such methods the interface is deduced based on a computed fluid fraction field. In 
tracking highly distorted interfaces, a combination of the strengths of Eulerian and Lagrangian 
methods will be desirable. Some efforts have been devoted recently to developing such methods."-'' 
Such methods employing fixed structured grids afford simplicity and availability of well-tested, 
economical field solvers. The only moving component is the interface. The presence of the internal 
boundary that passes through the fixed grid lay-out calls for special treatment, since some of the 
control volumes in the domain are fragmented by the interface. Udaykumar and Shyy" have described 
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some procedures designed to deal with the pure conduction system including the cut cells. quirk'4 has 
detailed some of the procedures involved in dealing with cell fragments in the framework of 
compressible, inviscid flows around stationary obstacles. However, the calculation of fluxes is not clear 
from that source. Zeeuw and Powell" and Bayyuk et ~ 1 . ' ~  employ a Cartesian grid to track the motion 
of solid objects through an inviscid compressible fluid. Miyata" has employed a fixed grid formulation 
for the simulation of wave breaking. The treatment of the free/moving surface in that work is not 
crucial to the physical phenomena under study and hence the treatment there is not very detailed. The 
physical problems discussed here are strongly affected by viscous effects and thus diffusion terms are 
to be included. Thus the full Navier-Stokes equations for incompressible flow including phase change 
are solved, with particular focus on the conservation of fluxes at the intedace. 

We choose for investigation the solidification phenomenon, where the interface is in motion and there 
is transport of momentum and energy across the interface. In various solidification processing 
arrangements, conditions are encountered under which the interface separating the solid and liquid 
phases needs to be accurately resolved in order to simulate the transport and phase change 
processes. 1 ~ 1 8 ~ 1 9  At the microscopic level, solid-melt interfaces experience morphological instabilities 
and break up into convoluted structures such as dendrites and cells.'8 At the macroscopic level, 
convective transport also causes the interface to display highly complicated characteristics in time and 
space.z031 In this work we develop a numerical simulation technique called ELAFINT (Eulerian- 
Lagrangian Algorithm For INterface Tracking). The technique can handle the conditions that are 
encountered during a typical solidification process. 

(a) The solid-liquid interface is a phase discontinuity; boundary conditions in each phase have to be 
applied for the fluid flow equations on this moving internal boundary. The interface is a source 
of heat, mass and momentum and can be arbitrarily distorted. 

(b) The method developed should be able to handle the solidification processes at the macro- and 
microscales. 

(c) Other demands on the solution procedure are similar to those on the pure conduction system." 

It is noted that the method developed here is applied to the solidification problem on account of the 
interesting and challenging interface behaviour involved; it is, however, not restricted to solid-liquid 
interfaces. The formulation and numerical technique are easily applied to other interfacial phenomena as 
well, with modifications for the boundary conditions. 

The numerical simulation of solidification phenomena requires the solution of the transport equations 
in each phase. In the liquid phase the Navier-Stokes equations are solved subject to the Boussinesq 
approximation as given below: 

momentum, 

If necessary, the Boussinesq approximation can be removed and the full Navier-Stokes equations solved 
in the melt. In the solid phase 

f = O  (4) 

and the energy equation reads 

aT - = a,V2T. 
at 
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In the above equations, ii is the velocity vector, p, Tand p are the pressure, temperahre and density 
respectively, a, v and /I are the t h d  diffiivity, hematic viscosity and thermal expansion mficient 
respectively, subscript ‘0’ implies a reference value and ‘1’ and ‘s’ represent liquid and solid phases 
respectively. 

The field equations are solved subject to the following boundary condition on the moving interface:’* 

Th- = T,( 1 - Y K) (Gibbs-Thomson condition), 

where T, is the melting temperatwe, y is the surface tension, L is the latent heat of h i o n  and K is the 
local curvature of the interface. The fluid flow velocity boundary conditions are 

ii - 7 = o (no slip), (7) 

pLii - ii = @, - pL)VN (mass conservation), 

where 7 and 
given by 

are the tangent and n o d  respectively and VN is the n o d  velocity of the interface, 

(Stefan condition). (9) 

Appropriate Neumann and Dirichlet conditions are applied at the boundaries of the computational 
domain. Boundary conditions for the equations in each phase are applied on this boundary, which 
requires that the cutvature and slopes of the interface be obtained accurately. Equation (9) is a statement 
of heat conservation across the phase discontinuity and inaccuracies in computing heat flues can lead 
to erroneous values of interface velocities. An efficient field equation solver needs to be developed 
which incorporates the information regarding interhx shape and location. The boundary conditions are 
to be applied at the a w t  location of the interface. Conventional tagrangian approaches employing 
moving boundaryconforming grids fail when the interface becomes highly contorted and suf€ers 
topological changes. The Eulerian methods solve for fluid fraction variables on stationary grids and 
reconstruct the interface based on the fluid &tion data in each cell, a process that involves several 
logical operations. In order for the interfaces obtained to be accurate, highly refined grids may be 
required. The computational procedure developed seeks to surmount the difficulties associated with 
conventional approaches by combining features of both methods. With this in view, Udaykumar and 
S h d 2  developed an interface tracking procedm that can handle highly distorted fronts and their 
interactions. In Reference 22 a systematic account is given to address the various aspects involved in the 
marker advancing scheme, including the orientation of the cut cell, topological changes of the interface 
and assessment of the interface shape and curvature evaluations. In this work we develop a complete 
algorithm called ELAFINT (Eulerian-Lagrangian Algorithm for INterface Tracking) capable of solving 
fluid flow problems bounded by complex configurations and moving boundaries, arising in phenomena 
such as materials solidification. 

To solve the field equations, afied Cartesian grid is used to perform the computations. The 
irregularly shaped interface is tracked over this grid and represented using marker parlicks. The 
markers are connected by piecewise circular arcs to obtain interfacial shape information such as n o d s  
and curvatures. The intedke is advanced in time by the Lagrangian translation of the marker particles, 
the normal velocity being computed from equation (9). The new interfhcial shape is obtained by joining 
these updated markers. The use of an Eulerian f id  kilitates the execution of merger--up 
pmxduces at the interface, a drawback conventionally attached to pure Lagrangian methods. The 
Lagrangian component of the present method allows the interface to be BccuTately captured, which 
is a significant improvement over the conventional Eulexian methods. In conjunction with 
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the interface tracking procedure a pressure-based control volume formulation is designed to solve the 
field equations. Since the interfxe cuts through the grid, hgmented control volumes may arise in the 
cells containing the interface. The present algorithm uses integration formulae consistent with the 
underlying discretization scheme to handle such cases. The basic features of the methodology presented 
here were developed in the case of pure conduction in previous work by Udaykumar and Shyy.' ' The 
ability to handle highly distorted interfaces and to follow the interfacial evolution accurately over long 
time durations was demonstrated in that work. 

In the following we describe for a general conserved variable 4 the application of a control volume 
formulation and the discretization scheme for a two-dimensional geometry. In Section 2 we clarify the 
treatment of the individual terms for each of the flow variables, explain the various issues involved and 
address the conservation and consistency aspects in the computational notation of the pressure-based 
methodology. We then present some test cases and comparisons to validate the solution procedure. 

2. THE CONTROL VOLUME FORMULATION FOR A TRANSPORT VARIABLE 4 

2.1. Discretization 

Consider the conservation law for the variable 4, defined to be (a) unity for the continuity equation, 
(b) u and v for the x- and y-momentum equations respectively and (c) specific enthalpy for the energy 
equation. In the general case we have 

Consider the interface that passes through a Cartesian grid at a given instant. The control volumes in 
the vicinity of the interface are irregularly shaped and in the most general case can assume a five-sided 
shape as shown in Figure 1. 

In order to evaluate the momentum fluxes through the cell faces, we integrate equation (10) over the 
control volume23 and employ the divergence theorem to get 

In two dimensions we have 

3 

Figun 1. mid control volume encountered in mixed Eulerian-hgrangian method 
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where the second term on the left-hand side is now the line integral of the outward normal convective 
fluxes and the first term on the right-hand side is the line integral of the outward normal diffision fluxes 
through the faces of the control volume. We now proceed to discretize each of the terms in equation (1 2) 
for the control volume shown. Thus 

where superscripts n and n + 1 indicate the time levels, 6t is the time step size and A, is the area of the 
irregular control volume. Next 

is the summation of the convective normal effluxes through each cell face of the control volume. The 
superscript n + 1 indicates the implicit nature of the scheme. The diffusion fluxes are computed as 

Let us denote the source term as 

I, s d4 = 3. 

Substituting equations (13H16) into equation (12), one obtains the discretized form as 

In particular the discrete form of the continuity equation can be written as 

Now multiplying equation (1 8) by the value $i, and subtracting from equation (1 7) gives 

2.2. The staggered grid 

The solution of the discrete form, namely equation (19). is carried out on the staggered grid 
arrangement shown in Figure 2. Staggered grids have been extensively adopted for computation of 
incompressible fluid flows owing to their many advantages.24f5 The variables and their respective 
control points are located as indicated in Figure 2. The interfke is thus required to be tracked on such a 
grid arrangement. The definition of the control volumes, which is carried out according to an 
intersection procedure," is now applicable to each type of control volume shown, namely the u, u 
and @, T )  control volumes. For a given control volume then, the interface tracking procedure provides 
the information shown in Figure 3. Thus, at each iteration, explicit definition of the interface 
location/control volumes for each variable and its grid is available. This facilitates the application of 
boundary conditions on the faces of the cells containing the interface, as explained later. 
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Figure 2. Control volumes for u, u, p and T variables showing staggered arrangement 

I+ I)  

(X”. Y.) 

Figure 3. Illmation of i n f o d o n  provided by interface tracking module during assembly of wefficicnts for control v o h  

2.3. Computation of the pressure field 

For incompressible flows, since no explicit equation exists for the pressure field, some means needs to 
be devised to compute the pressure field. To extract the pressure, one makes use of the continuity 
equation and obtains a correction equation for the pressure and velocities that enforces mass 
conservation. The correction procedure is continued until convergence is achieved for each time 
step. Such a pressure correction method has been widely used and is described in detail elsewhere.”*25 
The essential feature is that the following equation results for the pressure correction at each point, 
where the right-hand side represents the mass deficit in the control cell and is required to be nullified at 
convergence: 

The individual terms on the right-hand side are mass fluxes through the faces of the control volume, 
including the interfacial segments. 
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Figwt 4. Illustration of nomenclature: (a) control points; (b) control volume sides 

2.4. Computation of convective and dimivefluxes and source terms 

fluxes are evaluated as 
Returning now to equation (1 9) for the situation shown in Figure 4, for the variable 4 the convective 

which may be written as 

+ F n ( 4 n  - 4 ~ )  - Fs(4s - h) f ~ 1 u n d 4 1  - 4 ~ )  4. 
Here the Fs stand for the mass fluxes through the faces of the control volume. The lowercase subscripts 
indicate the values at the cell faces. The manner in which these fluxes are evaluated, i.e. the specific 
shape function assumed for the variable 4 for evaluation of these fluxes, determines the order of 
accuracy of the scheme employed. In equation (22) the sign of the last term is to be decided. What is 
required is the outward normal flux from the interfacial segment. We shall return to this point 
momentarily. 

Now the diffusion fluxes can be written as 
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Substituting the expressions provided by (22) and (23) into equation (19) and simplifying, we now 
obtain 

where 

with similar expressions for J, and J,. The following notation is standard for the SIMPLE 

with similar expressions for uN and us. The forms assumed by UE,W,N,S determine the order of accuracy 
of the differencing scheme employed. For example, 

aE = &A(IPeI) + [-Fe, 019 (29) 
where P. = FJD, is the cell Peclet number and the square brackets imply the maximum of the two 
quantities. In this work the second-order central difference scheme is employed to discretize spatial 
derivatives, for whichz4 

A(IP1) = 1 - 0*5(PI. (30) 
Equation (24) can now be written as 

Letting 

-- - a: PYA," 
6r 
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In the above discretization the value oft$ at any point P is dependent on its four immediate neighbours. 
When cast in matrix form, the equation reads 

where [CJ is a pentadiagonal coefficient matrix, 4 is the solution vector and B is a source vector. The 
procedure usually adopted is to solve the system of equations in iterative fashion employing a line SOR 
method, which calls for a tridiagonal matrix solution procedure. 

[cl PI = P I ,  (36) 

2.5. Computation of inter$acialfluxes 

We now proceed to detail the method for obtaining the interfacial flux terms. Considering the fluxes 

from the interface, we need to estimate the quantities 

at the interface and determine the missing signs to evaluate the flux terms. As for the above values at the 
interface, pI is easily obtained for incompressible flow as the value of the density at the liquid control 
point closest to the interface, while u.1, the fluid velocity normal to the interface, is evaluated from the 
boundary condition at the intedace, equation (9), once the interfacial velocity at that point is known. 
The interfacial velocity is of course determined from the Stefan condition during the course of the 
calculation and is coupled to the temperature gradients in the vicinity of the interface. The normal 
gradient of any variable 4, i.e. (&$/&I),, is evaluated in the same fashion as for the pure conduction 
problem. A probe is inserted in each phase and a biquadratic shape function is described in the vicinity 
of the interface. The derivative can then be estimated. The value of the variable at the interface, is 
again obtained from the boundary conditions. In particular 

(i) the u-momentum equation, t$ = u and UI = tlnlnx as shown in Figure 5;  
(ii) the u-momentum equation, t$ = u and y = unpY as shown in Figure 5;  
(iii) for the energy equation, t$ = T and TI is obtained fiom the Gibbs-Thomson condition at the 

interface. Next we need to decide upon the signs to be assigned to each of the interfacial fluxes. 
The diffusion flux with the as yet undetermined sign is 

F i p  5. Illustration of velocity compooemts of fluid at interface 
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The positive sign is applicable when an outflux is evaluated. By the procedure outlined above, the 
&ent evaluated is 

for the situation shown in Figure 6. The gmhent as evaluated above represents the influx into the control 
volume in each phase. A negative sign is therefore required to provide the efflux from the control 
volume. As for the sign of the convective interfacial flux, we have adopted the convention that the 
normal to the interface points into the liquid phase. Hence is the normal velocity of the fluid at the 
interface and is directed into the liquid control volume. Therefore the convective flux into the control 
volume is given by 

P l U d  dM41 - 4P). (41) 

To obtain an efflux h m  the control volume, a negative sign should appear in front of this flux term. 
Thus the final form of the source term b is given by 

2.6. Evaluation of the source term 

For each of the equations, namely the Continuity and momentum equations, the source term s 
assumes a different form. The pressure terms are included in this source term and its evaluation involves 
certain considerations which we now detail. For example, for the u-momentum equation we have 

and for the u-momentum equation 

Consider the term corresponding to the u-momentum equation as in (43) in relation to the u-control 
volume shown in Figure 7(a). Applying the divergence theorem, equation (43) can be Written as 

Figure 6. Interfacial merit of a field variable obtained by normal projection procedure 
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fa) 

Figure 7. Schematic and geometric representation of cut cell: (a) typical control volume with interfscial segmmt; (b) directions of 
normals and projected lengths for typical control volume (nx and n,, are components of unit normal in directions x and y 

respectively) 

where the length dy is the projected length of a side along the y-direction. Thus, for the control volume 
shown, the pressure contributions take the form 

3. = -Pc d c  +PW d w  fPI(dI),. (46) 

Now, as shown in Figure 7(b), (d& = d,n,, where n, is the x-component of the unit normal vector to the 
interface in that cell and is already available from the interface tracking information. From observing 
Figure 7(b), it is evident that for n, c 0 a negative sign is required in front of the pressure term for the 
interfacial segment and for n, > 0 a positive sign is required. Thus the appropriate form for the source 
term is now 

3. = -Pe de + ~w d w  + P I  d ~ x .  (47) 

To estimate the value of the pressure at the interface, p I ,  a bilinear extrapolation is performed from the 
neighbouring liquid phase pressure control points onto the interface location. 

2.7. The continuity equation: pressure correction equation 

The pressure correction equation is of the form shown in (20). The right-hand side contains mass 
fluxes through each side of the control volume. Such terms are easily evaluated, since the velocity values 
required in computing the mass fluxes are available at the cell faces, a feature of the staggered grid. The 
coefficients for the pressure correction equation are assembled in the standard way. 

2.8. Dealing with cut cells 

When the interface passes through the staggered grid arrangement as shown in Figure 2, the control 
volumes in the vicinity of the interface become fragmented. Consider the control volume for the u- 
velocity, u(i,J,  as shown in Figure 8(a). The ucontrol point lies in the liquid phase here, while the 
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w 

Figure 8. Definition of cut cells and their partners 

portion of the control volume shown shaded lies in the solid phase. However, in Figure 8(b) the shaded 
region belongs to cell (i, j - 1) but lies in the solid phase. Thus one has to account for the existence of 
such fragments of control volumes and assign them to the proper phase. This is done by defining partner 
cells for each type of cell, a procedure discussed in more detail in Reference 11. In Figure 8(a), for 
example, cell (i, 1) is now redefined to be the unshaded irregular cell. Similarly, in Figure 8(b) the new u- 
cell (i, 1) is defined by the shaded region. This procedure of redefining the cut cells and their partners is 
accomplished by running through the array of interfacial cells. By assigning partner cell fluxes and 
redefining dimensions, it is possible to maintain consistency at cell faces and conservation of fluxes. 

2.9. Conservation and consistency at cell faces 

In solving the set of conservation laws, it is important to set up the control volume formulation and 
differencing schemes so that strict conservation of fluxes is maintained. Consider the situation shown 
in Figure 9. Of concern to us are the flux evaluations through the faces of cells (i, 13 and ( i f  1,)’) and 
their relation to the partner cell definitions. The newly redefined cells after partner cell assignment are 
shown hatched. The fluxes through the west face of ( i , ~ )  are now magnified by the factor 
{dlW(i,j)  + [dy - Mi, j - l)]}/&(i,J to correct for the augmented length of the west face. A 
similar modification is made for cell (i - 1, j )  when its partner cell (i - 1, j - 1) is being dealt with. 
Simil&ly, in cell (i, j - 1) the pressure force on the west side is magnified by the factor above. Fluxes 

I I I 1 

I I I I 
Figure 9. Illustration of partner cell definitions 



ELAFMT: A MIXED EULERIAN-LAGRANGIAN METHOD 703 

from the interface computed in cell (i, j - 1) are assigned to cell (i, 19 and from cell (i - 1, j - 1) to cell 
(i - l , j ) .  Thus the partner assignment procedure and the cut cell coefficient assembly algorithms 
achieve explicit flux conservation in the cells affected by the interface. 

2.10. Anomalous cases 

However, some anomalous situations may be encountered in the coefficient assembly process. For 
instance, in Figure 10 the u-control point (i, j) is adjoined by a solid phase control point. Therefore the 
flux through the east face is not straightforward to compute. The way this is done to maintain 
consistency at that face is by noting that cell (i+ l , j +  1) has been redefined by the partner cell 
assignment procedure to be of the shape shown. Thus a part of the west face of cell (i + 1, j + 1) is now 
adjacent to the east face of cell (i, j). Therefore the flux through the west face of cell (i + 1, j + 1) has to 
be consistent with the fluxes through the east faces of (i, j )  and (i, j + 1). The flux through the east face 
of cell (i ,  1) is now obtained by redistributing the west face flux of cell (i + 1, j + l), weighted according 
to the dimensions de(i, 1) and dle(i, j + 1). In addition, if the east face pressure control point of cell (i, 1) 
is also in the solid phase, the pressure contribution from cell ( i  + 1, j + 1) is redistributed consistently 
between cells (i, j +  1) and (i,]). Such anomalous cases exist for all eight types of cells and for all 
control volumes. Treating such cases adds to the tedium of assembly of the coefficients but is critical in 
obtaining solutions to flow problems. If consistency at cell faces is violated, convergence cannot be 
achieved owing to the existence of spurious sources/sinks of mass, momentum and energy at such 
locations. 

2.11. Distinction between liquid and solid cells 

In the cell assembly procedure one has to be careful not to step across the interface into the opposite 
phase in performing the flux computations. The advantage in combining the Eulerian (field solver) and 
Lagrangian (interface tracking) methods here is that the two phases can be treated separately. Thus, 
unlike in the Eulerian methods, the interface separating the two phases can be explicitly defined and 
treated as a discontinuity. Also, in contrast with the Lagrangian methods, grid redistribution for 
conformity with the moving, distorting boundary is avoided. Thus, in each phase, the operations 
required to obtain the flux estimates should involve points in the same phase and the interfacial values 
only. The treatment of the liquid and solid phase control points follows the same procedure as far as the 
coefficient assembly is concerned. However, the solid is passive as far as fluid flow is concerned, unlike 
in the purely Eulerian methods, where it is assumed to have some porosity in the proximity of the 
interface to ease the sudden property jump across it. In our case, once the coefficients are assembled, a 

Figure 10. Illustration of an anomalous case in defining fluxes 
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flag denoting solid is employed to turn off the fluid flow computations in the solid phase, such that ap = 1 
and aE, aw aN, as, b = 0 in the solid, which results in u = v =p’ = 0 in the solid phase. This of course is 
not applicable for the energy equation, where heat conduction in the solid is to be accounted for. 

Once the solid and liquid cell coefficients are assembled, the solution procedure does not distinguish 
between the two phases. The AD1 method along with the tridiagonal matrix solution is employed for the 
entire domain of calculation. The difference scheme used in this work is the O(62) central difference 
scheme for all the cell face fluxes except the interface flux terms. The interface flux estimation is 
performed based on the two-point difference described in Section 2.5. By using a three-point scheme, 
the accuracy of the interface fluxes can be enhanced. 

2.12. Moving boundary problems-treatment of cells that change phase 

When the interface moves, e.g. owing to a change in phase, the shape of the interface at two time 
instants (or iterations) may develop as shown in Figure 1 1. Thus cells (i ,  J] ,  ( i  + 1, J] ,  etc. have moved 
from the solid phase into the liquid. In the implicit solution procedure adopted here, information 
regarding the previous state of a control point is required to evaluate the time derivative, i.e. the quantity 
4: corresponding to the new phase is non-existent for that control point. To overcome this difficulty, 
flags are employed indicating the current and previous phases of the control point. When a control point 
changes phase, the value at that location corresponding to the phase in which it finds itself is estimated 
by performing a linear interpolation as shown in Figure 12. The new value in a cell which undergoes a 
phase change is thus obtained by interpolation from neighbouring cells in the same phase as 

4:,j = (dYrb;,j+l+ ~ Y N ~ ; > / ( ~ Y I  + ~ Y N ) .  (48) 

Figure 1 1 .  Change in phase of cells as interface traverses domain 

Figure 12. Illustration of interpolation procedure for estimation of field quantities in cells that have changed phase 
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(4 Driven -%Pm (b) Nalnnd COllYCCtiOn 
Figure 13. Illust~ation of computational domain and boundary conditions for test cases presented. For both configurations, no- 
slip conditions are applied on all solid surfaces. A Cartesian grid is used. with the interface passing through the grid. The 

interface amplitude was equal to 0.1. which is 10?? of domain size 

In particular, the value c#, is then obtained via the implicit solution procedure by iteration. In our 
computations, flipping of a control point between two phases was practically nonexistent. This problem 
exists in purely Eulerian methods. In our case, since the interface is a continuous entity, each point on 
the interface is influenced by the motion of all its neighbouring along the interfacial curve and this 
global influence helps in avoiding phase flipping. In contrast, interface reconstruction procedures rely 
on local fluid fraction information in a cell to define the interfkce and thus it is possible for a cell to flip 
between phases in the course of the iterations. 

3. RESULTS AND DISCUSSION 

We first compare solutions for a stationary interface with those fiom well-tested solution procedures 
using body-fitted This exercise is designed to validate the conservation and consistency 
characteristics of the cut cell method. The interface is sufficiently deformed that all types of cut cells are 
encountered. In the absence of a consistent discretization in the vicinity of the interface it is found that 
convergence cannot be achieved and that care needs to be exercised in perfonning flux calculations in 
the grid cells affected by the interface. The computational domain is as shown in Figure 13(a). The 
square cavity is a frequently adopted test bed for numerical experiments on incompressible flows and 
benchmarks exist. We deform the base of the cavity, the amplitude being 1 P! of the base. A 121 x 12 1 
Cartesian grid is employed. We first present the results for a driven cavity flow where the top wall of the 
cavity is pulled at velocity U= 1 corresponding to a Reynolds number of 1000. The results fiom the 
present method are compared with a previously benchmarked body-fitted formulation with the same 
grid size. The results are shown in Figure 14. The streamline patterns in Figures 1qa) and 14@) show 
good agreement. A quantitative comparison can be seen in Figures 14(c) and 14(d), where the centreline 
velocities are plotted. 

In Figure 15 we compare the results for a stationary interface with natural convection in the cavity 
shown in Figure 13(b). The same grid size and interface shape as above are used. The Rayleigh number 
computed is 10’ and Pr = 1. Again the streamline patterns shown in Figures 15(a) and 15@) are in good 
agreement. In Figures 15(eb15(g) we compare the values of velocity components u and u and 
temperature respectively along the centreline of the cavity. The results agree closely with the body-fitted 
code. Thus it has been shown that the current scheme yields accurate results for the case of a stationary 
interface in the presence of complex flow fields. It is noted that the formulation developed here would be 
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Figure 14. Streamlines for a driven cavity with a deformed base. Re= 1000, 121 x 121 grid. (a) Contours from boundary-fitted 
grid computation. (b) On a fixed Cartesian grid using current method. Comparison of solutions from boundary-fitted and current 
Cartesian grid method. (c) Centreline u-velocity. Circles represent solution from boundary-fitted grid; M I  line is from current 

calculation. (d) Centreline u-velocity 

useful in computing incompressible flows around complex shapes employing fixed Cartesian grids, 
circumventing the need for generation of boundary-fitted grids. 

We now proceed to test the numerical procedure developed here for a situation involving phase 
change. Hitherto much effort has been devoted to numerically duplicating the results of Gau and 
Viskanta26 (hereinafter referred to as G&V) on the melting of gallium from a vertical wall in a 
rectangular enclosure. Gallium is adopted as the experimental material since it is a metal with a low 
melting point and thus is easy to handle. Unfortunately, numerical values of interface positions were not 
presented by G&V and the initial conditions are ambiguous. The authors also present interface shapes 
viewed from the front and rear of their experimental set-up and poor correspondence is observed. 
Furthermore, recent experiments of Campbell et aZ.*’ appear to differ from G&V in regard to interface 
shapes and positions. Underlying these facts is the difficulty in performing experiments in relation to 
flow fields and interface positions in opaque melts. Despite these limitations, the experiments of G&V 
have been extensively employed for comparison. Needless to say, the agreement between numerics and 
experiment is at best modest.28 A more effective comparison may be between numerical techniques of 
essentially disparate nature, e.g. purely Lagrangian and Eulerian methods. Lacroix and V0lle3~ have 
performed such a comparison. The grid sizes used by these authors, however, may not be sufficiently 
fine to resolve all the flow features. In our work we found the presence of multiple convection cells in the 
initial stages of development of the interface in some cases. It is not conceivable that such cells can be 
resolved by coarse grids. The presence of such cells is important to capture, in particular because the 
interface shape reflects the presence of these flow features. Thus two different numerical schemes can 
yield the same results for the same grid spacing, but neither may actually be an accurate calculation. In 
fact, the level of numerical dissipation, i.e. the order of accuracy of the numerical technique, was found 
to determine the types of flow features resolvable, especially at higher Rayleigh numbers. Thus the 
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Figure 15. Streamlines for natural convection in a deformed cavity. Re= lo’, Pr= 1. 121 x 121 grid. (a) Result from boundary- 
fitted grid computation. @) Results from Cartesian grid computation. (c) Isotherm contours from boundary-fitted formulation. (d) 
Isotherm contours from Cartesian grid computation. (e) Centreline u- velocity. Circles arc from boundary-fitted grid 

computation; full line is from mnmt method. (9 Centrelie uvelocity. (g) Centreline tcmpaatun 

entire situation, especially for the higher Reynolds numbers, is found to be highly sensitive to the 
numerical conditions employed. Since the interface shape is strongly linked to the flow features and vice 
versa, great care must be employed in performing the computations. 
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Here we present calculations for the melting of gallium from a vertical wall for the configuration 
shown in Figure 16. The current method is compared with an enthalpy-based Eulerian method3' 
employing an 8 1 x 8 1 grid. Unless otherwise mentioned, the second-order central difference scheme is 
used for both methods. In a method dealing with the temperatw as a variable and using an interf'ace 
tracking procedure, it is not possible to initiate melting in a domain that is entirely solid. Thus the 
computation using the present method is started from an initial condition generated by the enthalpy 
method, so that a thin initial melt layer exists at the start. The flow field and temperature field are 
obtained from the purely Eulerian method. Melting is initiated at the left wall. In Figure 17 we show the 
results for a Rayleigh number of 1 04. The Prandtl number of gallium is 0.02 1. The Stefan number for 
this case is 0442. The interfacial shape and position are compared in this case with those of the 
enthalpy-based method in Figure 17(a). As can be seen, close agreement is maintained between the 
predictions of the two methods. The present interface tracking method is marginally slower than the 
purely Eulerian method for large times. However, it is likely that with m e r  refinement of the grid 
better agreement could be obtained. It may be noted that the location of the elbow in the phase front is 
correctly predicted and thus the size of the recirculation zone is obtained accurately. This can be seen 
from the plots of the streamlines at two different time instants shown in Figures 17(c)-17(f). 
Furthermore, the centreline velocities and temperature profiles shown in Figure 17(b) are in good 
agreement. Thus this experiment has proved that the methods employed in treating the interface, in 
particular the flux computations for the cut cells, the treatment of pressure terms and the procedures 
involved with the newly formed cells, are borne out by these calculations. 

We next present in Figure 18 the results for a higher Stefan number. In this case, as above, Ru = 1 O4 
and Pr=O.O21, but the Stefan number Sf=O.42, a 10-fold increase. In Figure 18(a) the interface 
positions are compared, plotted at equal intervals of time 6t* = 10. As can be seen, the results are very 
close except for the lagging of the current method for larger times. However, even for the rapidly 
moving interface the h n t  shapes are well predicted, which implies that the bulk flow features, i.e. 
recirculation zones, are obtained accurately. In the figures containing streamfunction and isotherm 
contours, Figures 18(c)-18(h), the interface has been represented in each case by plotting the 
temperature contours T= - 0405,O.O and 0.005. In the case of the enthalpy method this is the best 
approximation to the interface shape that one can obtain. In fact, in the comparisons of interface shapes 
the values corresponding to the enthalpy method are obtained as those corresponding to the & = 0.5 
contour by interpolation. Thus there is an uncertainty in the order of the grid spacing in identieing the 
interface position in the enthalpy method. In contrast, the interface tracking procedure explicitly yields 

F i p  16. Illustration of computational domain and boundary conditions for melting of gallium The melting is initiated at the 
left wall. No-slip velocity conditions are imposed on all solid surfaces. Computations are performed on a Cartesian grid 
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Figure 17. Melting of gallium. Ra = I@, Pr = 0.021, St = 0442.8 I x 8 1 grid. Melting is initiated at the left. (a) Comparison of 
interface positions at equal intavals of time. Chain lines represent mthalpy-based method; full l i  comspond to pnsent 
method. (b) Comparison of centreline profiles. Stnamline contours at t = 50 and 100. Comparison of mthalpy and prwent 
methods. (c) Cumat iatcrfscc -king method, t = 50. (d) Entbaipy method, t = 50. (e) Current method, = 100. (0 Enthalpy 
method, t = 100. The interhce ha9 been represented by plotting the tmrperaatrr contours behwcen T= - 0405 and 0.005. In the 
case of the cumnt method the interface position is actually available explicitly and exactly. In the entbalpy method the only 

iIlfomtion regardlug the interface is the mtom shown 

idormation regarding interface shape. Also, it is noted that in the interface tracking method no 
modelling of the physics is necessary in the vicinity of the interface, while in the enthalpy method there 
is an unavoidable smearing of information. In addition, the D’Arcy law treatment and the mushy zone 
model” obscure the transport processes in this region. 

The results presented above were applicable to phase change at the macroscopic scale. The interface 
at such scales is only mildly distorted, as Seen in Figures 17(a) and 18(a). However, at the microscopic 
level the interfhce can be highly deformed and can assume highly branched foxms called dendrites and 
deep cellular morphologies. The transport mechanisms at that level are dominated by thermal diffusion. 
However, significant effects of convection have been r e p ~ r t e d . ~ ~ - ~  Results for the evolution of 
diffiionconlrolled morphological instabilities are presented in Reference 11. The results for such 
diffusion-controlled growth demonstrate the expected effects of surface tension at the microscopic level. 
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Figure 18. Melting of gallium. Comparison of solutions from enthalpy method and present interface tracking method. Higher- 
Stefan-number case. Re = I O', Pr = 0.02 1, St = 0.042, 8 1 x 8 1 grid. (a) Comparison of interface shapes at equal intervals of 
time. Full lines cornspond to present method; chain lines repment enthalpy method. @) Comparison of centreline values. The 
legend is self-explanatory. (c) Streamline contours for current method at t = 50. (d) Streamline contours for entblpy method at 
t = 100. In (c) and (d) the interface is represented by plotting the tempemture contours T= - 0.005, 0.0 and 0.005. (e) 
Streamline contours at f =  100, in- tracking method. (9 Streamline contours at t=  100. enthalpy method. (g) Isotherms at 

t = 100, interface backing method. (h) Isotherms at t = 100. enthalpy method 
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The present method has been shown to be capable of tracking evolving interfaces for large times and 
distortions. Computations of microstructure evolution with effects of convection included are in 
progress. 

4. CONCLUSIONS 

ELAFINT has been developed to combine the strengths of the purely Eulerian and Lagrangian 
methods. This has resulted in a method that has the following features. 

. Highly distorted interfaces can be handled by the Lagrangian component, namely the interface 
tracking scheme. In previous work” we have demonstrated the ability of the scheme to capture 
the interactions, i.e. merger and break-up of different shapes and their subsequent evolution. The 
methods that were developed to handle dihion-controlled instability phenomenal’ have here 
been extended to incorporate convection effects. 

2. The computations are performed on a fixed Cartesian grid. Thus the problems of grid 
redistribution associated with body-fitted adaptive grids is avoided. Also, the procedures 
employed in the discretization of the equations on such a grid lend themselves to the use of well- 
tested implicit pressure-based flow solvers. The solutions are achieved by discretizing the 
equations via a control volume formulation, with particular attention to conservation and 
consistency in assembling the fluxes of conserved variables. The solution is achieved by using 
the line SOR method, leading to the iterative solution of tridiagonal matrices. 

3. The interface definition is strictly maintained and the boundary conditions applied on the control 
volumes. The release of latent heat during phase change has been incorporated via the Stefan 
condition. Several details involved in dealing with the presence of the interface have been 
presented. Some procedures have been devised to deal with the flux of quantities at the interface. 

The results presented here demonstrate the performance of the computational procedure by 
comparing with previously tested methods. It can also be incorporated to treat many other moving 
boundary problems, such as those reviewed in Reference 35. 
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